Fast Runge-Kutta approximation of inhomogeneous parabolic equations

نویسندگان

  • María López-Fernández
  • Christian Lubich
  • Cesar Palencia
  • Achim Schädle
چکیده

Maŕıa López-Fernández1, Christian Lubich2, Cesar Palencia1, and Achim Schädle3 1 Departamento de Matemática Aplicada y Computación, Universidad de Valladolid, Valladolid, Spain. E-mail: {marial, palencia}@mac.cie.uva.es 2 Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D–72076 Tübingen, Germany. E-mail: [email protected] 3 ZIB Berlin, Takustr. 7, D-14195 Berlin, Germany. E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Runge-kutta Methods for Parabolic Equations and Convolution Quadrature

We study the approximation properties of Runge-Kutta time discretizations of linear and semilinear parabolic equations, including incompressible Navier-Stokes equations. We derive asymptotically sharp error bounds and relate the temporal order of convergence, which is generally noninteger, to spatial regularity and the type of boundary conditions. The analysis relies on an interpretation of Run...

متن کامل

On Runge-Kutta Methods for Parabolic Problems with Time-Dependent Coefficients

Galerkin fully discrete approximations for parabolic equations with time-dependent coefficients are analyzed. The schemes are based on implicit Runge-Kutta methods, and are coupled with preconditioned iterative methods to approximately solve the resulting systems of linear equations. It is shown that for certain classes of Runge-Kutta methods, the fully discrete equations exhibit parallel featu...

متن کامل

Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence

We unify the formulation and analysis of Galerkin and Runge–Kutta methods for the time discretization of parabolic equations. This, together with the concept of reconstruction of the approximate solutions, allows us to establish a posteriori superconvergence estimates for the error at the nodes for all methods.

متن کامل

Stability of Explicit Runge-Kutta Methods for High Order Finite Element Approximation of Linear Parabolic Equations

We study the stability of explicit Runge-Kutta methods for high order Lagrangian finite element approximation of linear parabolic equations and establish bounds on the largest eigenvalue of the system matrix which determines the largest permissible time step. A bound expressed in terms of the ratio of the diagonal entries of the stiffness and mass matrices is shown to be tight within a small fa...

متن کامل

Runge - Kutta Approximation of Quasi - Linear Parabolic Equations

We study the convergence properties of implicit Runge-Kutta methods applied to time discretization of parabolic equations with timeor solutiondependent operator. Error bounds are derived in the energy norm. The convergence analysis uses two different approaches. The first, technically simpler approach relies on energy estimates and requires algebraic stability of the RungeKutta method. The seco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2005